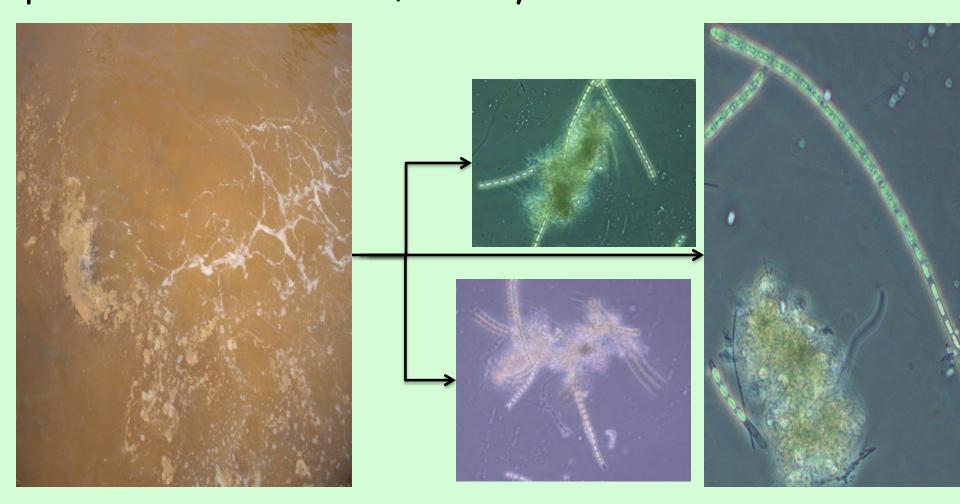


GROWTH PERFORMANCE OF SUPER INTENSIVE Litopenaeus vannamei BFT CULTURE SYSTEM USING FISH MEAL ANALOG

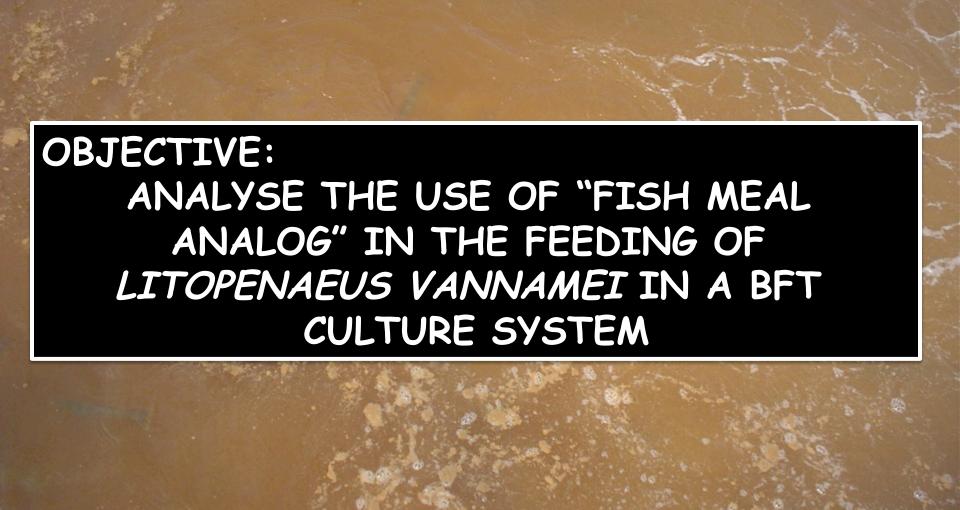
Dariano Krummenauer, Andre Freitas, Carlos Augusto Prata Gaona, Aline Bezerra, Gabriel Santos, João Manoel Alves and Wilson Wasielesky Jr.

Rio Grande, Brazil

SOFIA, FAO, 2014


Table 24 FAO Fish Model: overall trends to 2022 Base period 2022 scenarios 2010-2012 Baseline Intermediate Optimistic Mixed (Million tonnes in live weight equivalent) WORLD Total fishery production 153,940 181.070 188.093 194.800 194,792 92.402 99,330 Aguaculture 62,924 85,124 99.330 95,946 95.692 95.462 Capture 91.016 95,474 Fishmeal production (product weight) 7.021 7.734 6.103 7.358 7.679 Fish oil production (product weight) 0.980 1.079 1.087 1.094 1.088 Fish trade for human consumption 36,994 45.082 45,566 46,237 46,566 Fish supply for human consumption 131,741 160.514 167,397 173,969 174.032 Per capita apparent fish consumption (kg) 20.7 21.6 22.4 22.4 18.9

Aquaculture will increase about 50%, but fish oil and meal will increase about 15%. How to do that???


Alternative meals for shrimp diet

Authors		Species	Replaced
Davis & Arnold, (2000)	Soybean meal and poultry by-product meal	Litopenaeus vannamei	80%
Forster et al. (2003)	Meat and bone meal	Litopenaeus vannamei	25 e 75%
Samocha; et al. (2004)	Soybean meal	Litopenaeus vannamei	100%
Amaya et al. (2007)	Poultry by-product meal	Litopenaeus vannamei	16%
Cruz-Suarez et al. (2007)	Poultry by-product meal	Litopenaeus vannamei	80%
Suarez et al. (2009)	Soy protein concentrate	Litopenaeus vannamei	80%
Bauer et al. (2012)	Biofloc meal	Litopenaeus vannamei	100%
Molina-Poveda et al. (2013)	Tremoço meal	Litopenaeus vannamei	50%
Tan et al. (2005)	Meat and bone meal	Litopenaeus vannamei	80%
Hernández et al. (2008)	Pork meal	Litopenaeus vannamei	>35%

Several researchers are confirming that bioflocs system can contribute to shrimp, nutrition, growth, survival, FCR, decrease protein content in the feeds, immunity and so one.

Avnimelech Ballester Abreu Baloi Arantes Schveitzer Bratvold Browdy Lawrence Crab Burford Verstraete Schryver Ebeling Furtado Gaona Timmons Suita Poersch Wasielesky Krummenauer Foes Hargreaves Lee Jung Mcintosh Lara Emerenciano Peixoto Davis Soares Correa Kuhn Samocha Maicá MacGraw Moss Moss Ray Leffler Samocha Patnaik Scopel Viau Ballester Browdy Stokes Venero Lotz Arnold Coman Avnimelech Bratvold Burford Wasielesky Samocha Cohen Preston Ebeling Hari Verdegem Stokes McAbee Otoshi Schneider Avnimelech Tacon Gaxiola-Cortés Cuzon Seiffert Valenzuela Kuhn Silva Tacon Conquest Ray Decamp Atwood Stokes Tung Taw and so one

Two Studies

- 1. The use of FMA in feeding of L. vannamei growout (From 1 to 10 g) in and BFT system;
- 2. The use of FMA in feeding of L. vannamei growout (From 10 to 20 g) in and BFT system.

Location of Study

- ✓ Marine Station of Aquaculture
- ✓ Institute of Oceanography, Federal University of Rio Grande, RS, Brazil
- √ 9 Raceways 35 m²

Three types of Isoproteic and isoenergetic feed were produced (38% CP and 7.5% EE), with different replacement of Fishmeal by Fishmeal Analog.

ТО	T50	T100
0% FMA	50% FMA	100% FMA
100% FM	50% FM	0% FM

Fishmeal Analog's i	ngredients
	Meat Meal
	Bone meal
	Blood meal
F	eather meal
Poultry	by-product meal
	Squid meal
F	ish solubles
	Fish oil
	Lectin
	Lysine
ŀ	Hemoglobin
	Cholesterol
1	Methionine
-	Tryptophan
М	icro Minerals
Vit	amins Premix
Amir	no Acids Premix

*Data provided by GUABI feeds - Centro-Oeste Rações LTDA

Fishmeal analog's composition (%)		
Crude protein	47.4	
Crude lipids	16.3	
Linolenic acid	2.1	
Phospholipids	3.5	
Cholesterol	0.3	
HUFA	1.7	
Fibers	0.9	
Ashes	16.2	
Calcium	5.7	
Total phosphorus	3.0	
Total lysine	3.9	
Total cysteine	0.9	
Total methionine	1.4	

^{*}Data provided by GUABI feeds - Centro-Oeste Rações LTDA

- √ Feeding rate was based on Jory et al. (2001)
- ✓ Belt feeder (12 hours)
- √ 10% of the feed was distributed in circular feeding trays

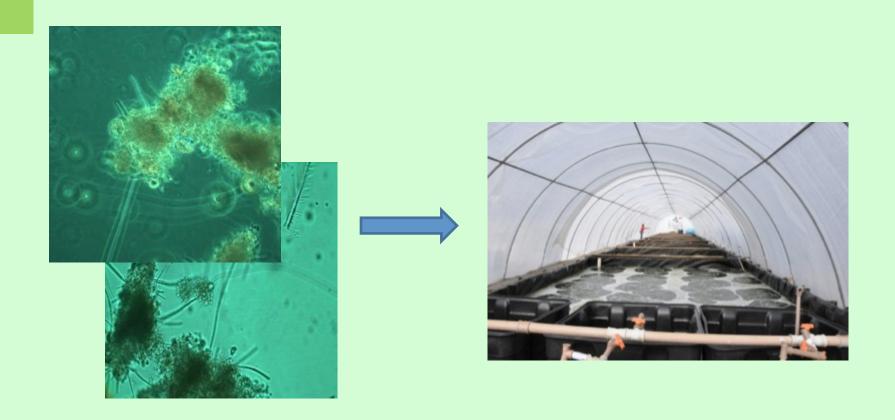
PRE-FERTILIZATION

- The measurement of TA-N was performed every day;
- Organic Fertilization (C:N) 6:1 with molasses
- Fertilization when ammonia achieved 1 mg/L;

Fertilization based on Avnimelech

(1999) and Ebeling et al. (2006)

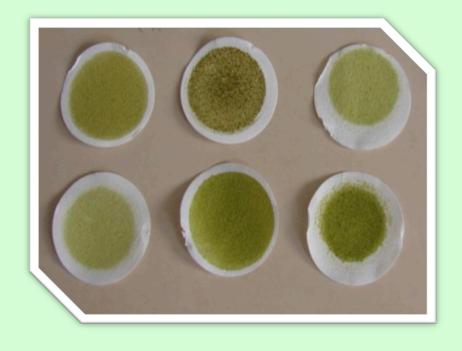
Molasses from USA


Molasses from ECUADOR

Molasses from BRAZIL

Biofloc formation - Inoculum

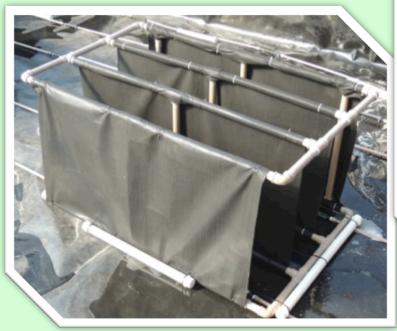
 20 % of aged inoculum was pumped from nursery system for better nitrifying process (Krummenauer et al. 2013)


✓ pH, temperature, dissolved oxygen and salinity were measured daily

- ✓ Analysis of ammonia, nitrite and nitrate every three days;
- √ Shrimps were sampled weekly to check growth;
- ✓ C o u n t i n g t o t a l number of shrimps in the end of the experiment to determine the survival;
- ✓ Results were analyzed by oneway ANOVA (α =0.05)

Biofloc control:

- √ Total Suspended Solids (TSS)
- √ Bioflocs volume (Imhoff cones)
- *(Three times / week)



ARTIFICIAL SUBSTRATE:

√ 200% of surface area

MULTI-STRAIN COMMERCIAL PROBIOTIC

Water

- √ 0.5 ppm /week
- ✓ Distribute the mixture in several locations around the tank.

Feed

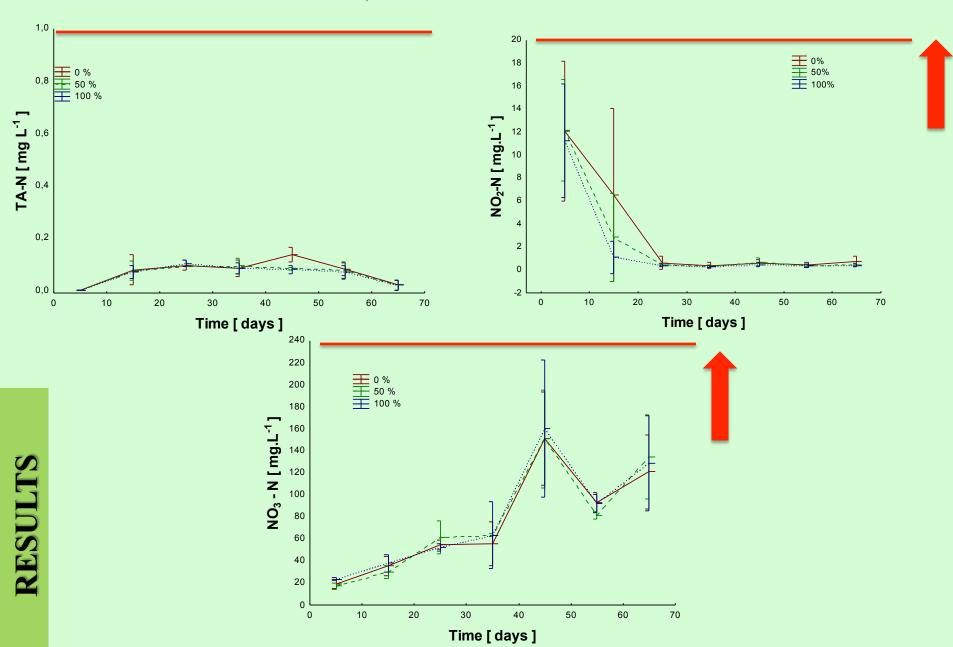
- √ 3 g/kg diet
- ✓ Mix with the feed and let dry
- ✓ Feed was distributed in several locations around the tank.

Experiment 1

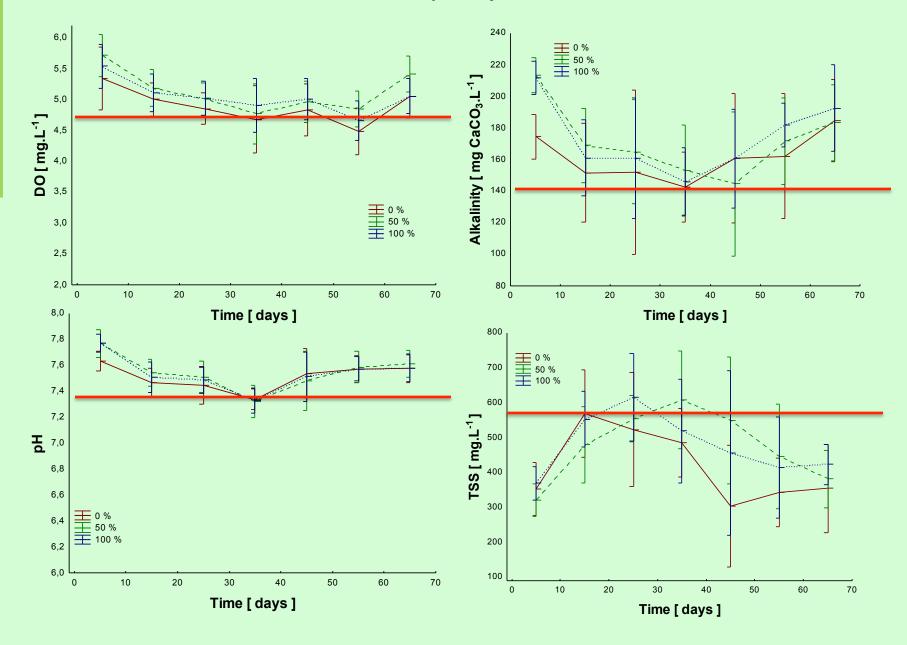
The use of FMA in feeding of *L*. vannamei growout (from nursed juveniles to 10 g) in and BFT system

Greenhouse

- √ 3 treatments 3 replicates
- ✓ Stocking density: 400 shrimps.m⁻²
- ✓ Initial weight: 2.64 ± 0.77 g (*L. vannamei* juveniles)
- √ Time: 70 days



✓ Treatments:


- √ TO 0% FMA: Diet with 0% replacement of fishmeal by fishmeal analog;
- √ T50 50% FMA: Diet with 50% replacement of fishmeal by fishmeal analog;
- √ T 100 -100% FMA: Diet with 100% replacement of fishmeal by fishmeal analog

Ammonia, Nitrite and Nitrate


DO, Alkalinity, pH and TSS

Water Quality parameters monitored during experimental period. Results shown as mean ± standard deviation.

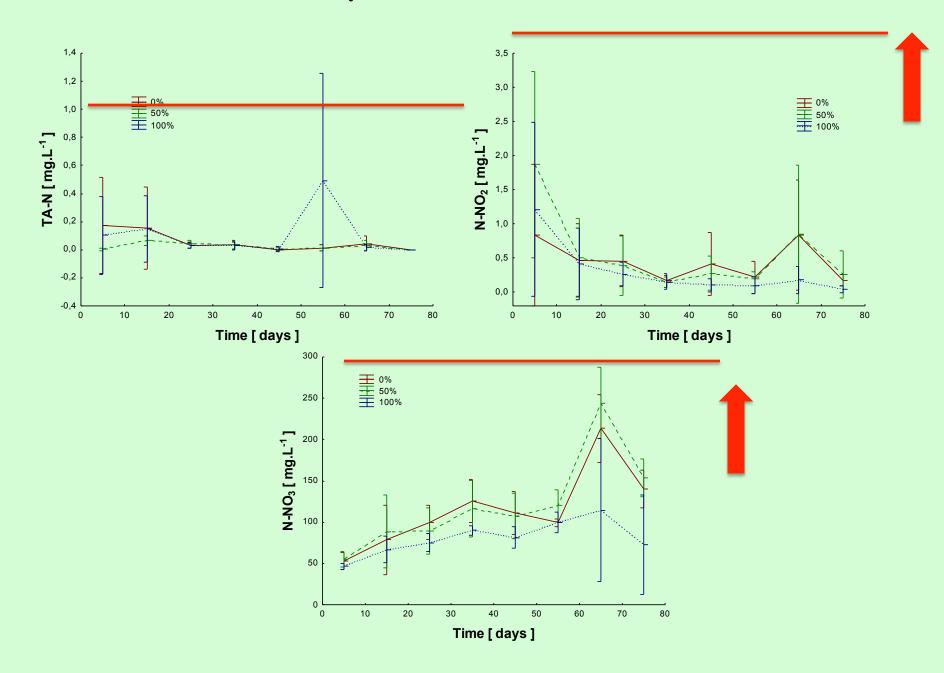
Parameters	0 % FMA	50 % FMA	100 % FMA
DO (mg.L ⁻¹)	4.89 ± 0.53	5.13 ± 0.45	5.04 ± 0.44
рН	7.51 ± 0.16	7.55 ± 0.16	7.54 ± 0.14
Salinity	23.04 ± 0.58	23.19 ± 0.48	23.63 ± 0.54
Alkalinity (mg CaCO₃.L ⁻¹)	161.0 ± 34.56	170.60 ± 25.83	173.17 ± 21.61
TA-N (mg.L ⁻¹)	0.07 ± 0.02	0.07 ± 0.02	0.07 ± 0.01
NO ₂ N (mg.L ⁻¹)	3.02 ± 2.07	2.45 ± 1.15	2.03 ± 0.90
NO ₃ -N (mg.L ⁻¹)	83.27 ± 16.71	83.89 ± 11.91	87.46 ± 19.88
PO ₄ -P (mg.L ⁻¹)	2.80 ± 0.45	2.94 ± 0.63	3.03 ± 0.58
Settleable solids (ml.L ⁻¹)	18.8 ± 4.90	25.1 ± 8.00	26.4 ± 8.70
TSS (mg.L ⁻¹)	427.00 ± 122.75	477.06 ± 103.12	486.01 ± 110.94
Turbidity (NTU)	165.50 ± 52.65	207.82 ± 44.76	200.21 ± 52.54

Growth

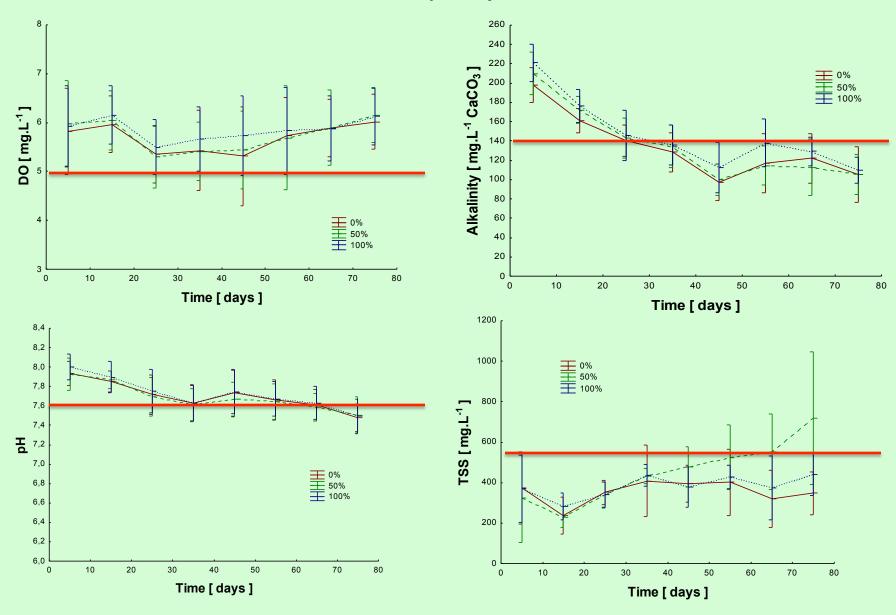
Zootechnical parameters of of L. vannamei fed with diet including different replacement levels of fishmeal analog (FMA) in biofloc system. Results shown as mean \pm standard deviation.

Parameters	0 % FMA	50 % FMA	100 % FMA
Initial weight (g)	2.64 ± 0.77	2.64 ± 0.77	2.64 ± 0.77
Final weight (g)	12.19 ± 2.98	13.51 ± 2.92	13.34 ± 3.49
Initial biomass (kg/tank)	36,96	36,96	36,96
Final biomass (kg/tank)	153.93 ± 4.55	158.72 ± 4.99	149.29 ± 2.72
Produced biomass (kg/tank)	116,97 ± 4.55	121,76 ± 4.99	112,33 ± 4.72
Final Yield (kg.m ⁻²)	4.40 ± 0.13	4.53 ± 0.14	4.26 ± 0.18
WGR (g.week ⁻¹)	1.08 ± 0.10	1.11 ± 0.19	1.10 ± 0.14
Survival (%)	86.83 ± 7.68	82.17 ± 3.75	81.97 ± 4.79
FCR	1.47 ± 0.06	1.37 ± 0.06	1.50 ± 0.10

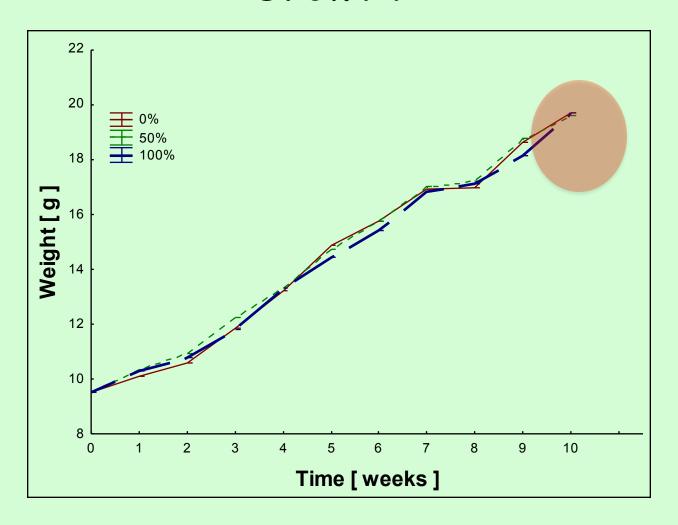
Experiment 2


The use of FMA in feeding of L. vannamei Grow out (From 10 to 20 g) in and BFT system

METHODS


- √ Nine 35.000 L lined greenhouse enclosed raceways
- ✓ Initial weight: 9.25± 1.24 g
- √ (shrimps from growout)
- √ Stocking density: 200 shrimps/m²
 or /m³
- ✓ Period: 77 days
- ✓ Same methodology of first study and the same water

Ammonia, Nitrite and Nitrate


DO, Alkalinity, pH and TSS

Water Quality parameters monitored during experimental period. Results shown as mean ± standard deviation.

	Т0%	T50%	T100%
Temperature (°C)	27.5 ± 2.1	27.3 ± 2.3	27.5 ± 1.9
DO (mg.L ⁻¹)	5.67 ± 0.79	5.71 ± 0.75	5.84 ± 0.72
рН	7.70 ± 0.31	7.70 ± 0.20	7.75 ± 0.22
Salinity	18.20 ± 0.54	18.17 ± 0.81	17.43 ± 0.99
Alkalinity (mg.L ⁻¹ CaCO ₃)	138.87 ± 37.16	142.27 ± 43.07	153.44 ± 42.43
TAN (mg.L ⁻¹)	0.087 ± 0.2	0.054 ± 0.1	0.124 ± 0.3
NO ₂ -N (mg.L ⁻¹)	0.48 ± 0.57	0.33 ± 0.54	0.60 ± 0.80
NO ₃ -N (mg.L ⁻¹)	108.97 ± 57.26	114.43 ± 66.90	80.98 ± 39.30
PO ₄ -P (mg.L ⁻¹)	2.56 ± 1.13	2.34 ± 0.85	2.03 ± 0.63
SS (mL.L ⁻¹)	20.50 ± 14.70	40.28 ± 35.91	28.62 ± 19.2
TSS (mg.L ⁻¹)	343.13 ± 141.26	430.83 ± 204.46	361.70 ± 121.03
VSS (mg.L ⁻¹)	0.050 ± 0.1	0.067 ± 0.1	0.074 ± 0.1
Turbidity (NTU)	206.06 ± 78.04	305.61 ± 198.29	217.27 ± 95.41

Growth

Zootechnical parameters of of L. vannamei fed with diet including different replacement levels of fishmeal analog (FMA) in biofloc system. Results shown as mean \pm standard deviation.

	0%	50%	100%
Inicial Weight (g)	9.25±1.24	9.25±1.24	9.25±1.24
Final Weight (g)	19.47±4,63	18.73±4.10	18.59±3.90
Inicial Biomass (kg)	64.75	64.75	64.75
Final Biomass (kg)	125.16±5.21	125.22±6.53	127.40±3.39
Produced Biomass (kg)	60.41±5.21	64.7±6.53	62.65±3.39
Inicial Productivity (kg.m ⁻²)	1.85	1.85	1.85
Final Productivity (kg.m ⁻²)	3.58±0.15	3.58±0.19	3.64±0.10
Weekly Growth (g)	0.93±0.09	0.86±0.12	0.85±0.11
Survival (%)	92.11±8.15	95.58±2.93	97.60±3.40
FCR	1.95±0.16	1.93±0.18	1.70±0.34

Conclusions

- ✓ Results confirm that biofloc present in BFT system can supply important nutrients not included in the feeds;
- ✓ It is possible to replace 100% of fishmeal with FMA in shrimp feeds, in BFT system.

Next Steps

✓ Elucidate how biofloc can contribute in shrimp nutrition when FMA is used;

✓ Low protein in FMA feeds;

✓ Low the cost of FMA.

ACKNOWLEDGEMENTS

Ministerio da

